

5th SBSE International Meeting - Paris Aroma Analysis of Cocoa and Chocolate at Barry Callebaut Isabelle Van Leuven

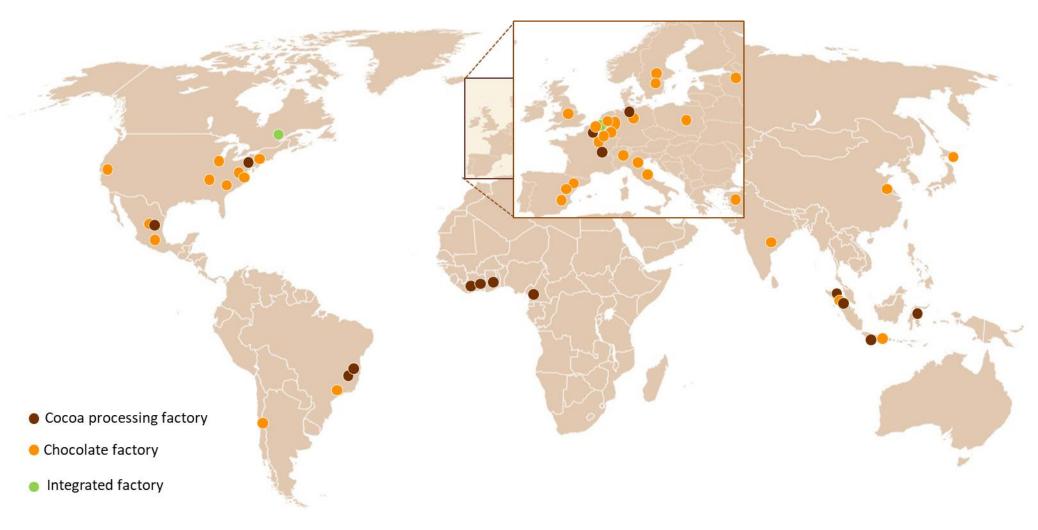
5TH SBSE INTERNATIONAL MEETING

23 & 24 SEPTEMBRE 2019 - NOVOTEL PARIS-SUD

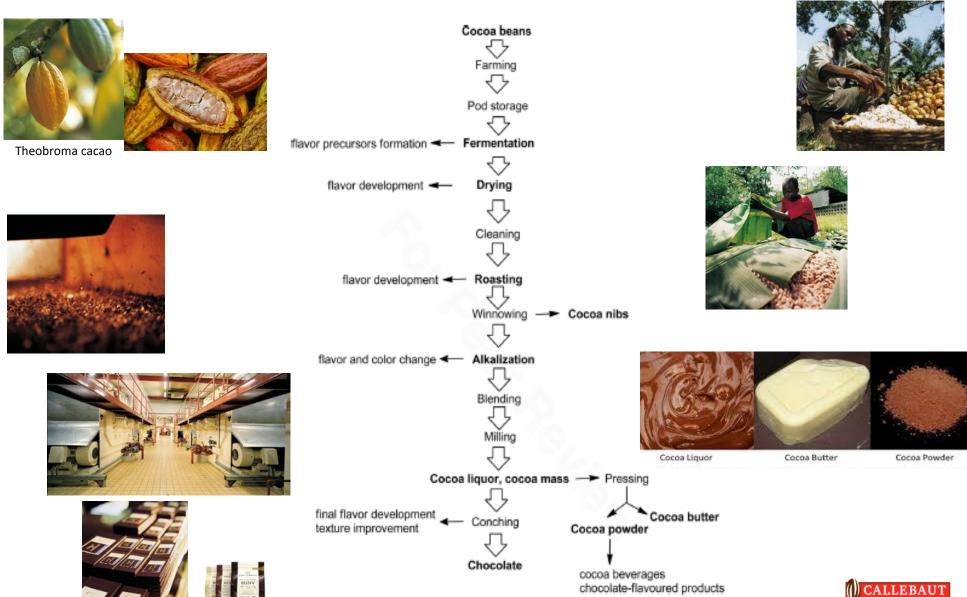
Agenda

- Presentation of company Barry Callebaut (BC)
- From Cocoa to Chocolate flavor
- Aroma Chemistry of Cocoa and Chocolate
- Aroma analysis at BC
- Case studies of Aroma analysis at BC
- Conclusions

BARRY () CALLEBAUT



- ► The world's leading manufacturer of high-quality chocolate and cocoa products
- Headquartered in Zurich, Switzerland
- A business-to-business company
- ► Founded in July 1996 as a merger between French Cacao Barry and Belgian Callebaut
- Some of our brands date back to the early 19th century
- Chocolate and cocoa products from sourcing and processing cocoa beans to producing the finest chocolates, including chocolate fillings, decorations and compounds
- More than 11.000 employees



BARRY CALLEBAUT

From Cocoa to Chocolate flavor

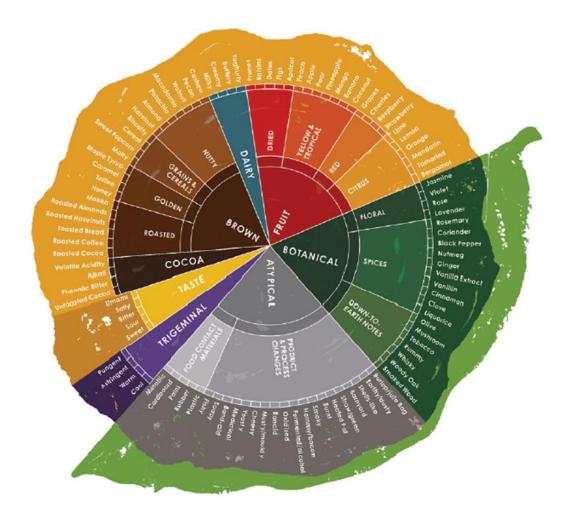
Aroma Chemistry of Cocoa and Chocolate

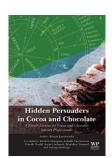
- Chemical classes of aroma compounds
 - Volatile acids
 - Volatile phenols
 - Alcohols
 - Aldehydes
 - Ketones
 - Lactones
 - Esters
 - Sulfur compounds
 - Heterocyclic compounds (pyrazines, furans)
 - Terpenes

→ odor characteristic and threshold value!!

Aroma Chemistry of Cocoa and Chocolate

Aroma Compounds and their sensory descriptions


Aroma Compounds	Sensory description
Cocoa notes	
2-methylbutanal	malty, chocolate-like
3-methylbutanal	malty, cooca
5-methyl-2-phenyl-2-hexenal	cocoa, coffee-like
Roasted notes	
trimethylpyrazine	roasted, earthy
2-ethyl-3,6-dimethylpyrazine	roasted, earthy
2-ethyl-3,5-dimethylpyrazine	roasted, earthy
Volatile acidity	
acetic acid	vinegar-like, sour
Fruity notes	
ethyl 2-methylpropanoate	fruity
2,3-butanedione	buttery
methyl 3-methylbutanoate	frutiy, pineapple, apple
ethyl 2-methylbutanoate	fruity
ethyl 3-methylbutanoate	fruity
g-nonalactone	coconut-like
2-octen-d-lactone	coconut-like, fruity
massoya lactone	coconut-like, fruity
furaneol	caramel-like, strawberry-like
ethyl-3-phenylpropanoate	floral, fruity
Fioral notes	
linalool	floral
phenylacetaldehyde	honey-like, rose-like
ethyl phenylacetate	honey-like, rose-like
2-phenylethyl acetate	honey-like, rose-like
b-damascenone	floral
2-phenylethanol	honey-like, rose-like
Cinnamon/spicy notes	
ethylcinnamate	cinnamon-like


Aroma Compounds	Sensory description
Vanillin	
vanillin	vanilla-like
Cabbage, meaty notes	
dimethyl disulfide	cabbage-like
dimethyltrisulfide	cabbage-like
2-methyl-3-(methyldithio)-furan	cooked meat-like
Smoky/hammy notes	
2-methoxyphenol	medicinal, smoky
4-methyl-2-methoxyphenol	woody, smoky
3-methylphenol	medicinal, woody
4-methylphenol	medicinal, woody
4-ethylphenol	smoky, bacon-like
2,6-dimethoxyphenol	hammy, bacon-like
Musty, earthy notes	
3-isopropyl-2-methoxypyrazine	green, bell-pepper
3-isobutyl-2-methoxypyrazine	earthy, bell-pepper
Paper/cardboard notes	
E-2-nonenal	cucumber-like, cardboard
Sweaty, cheesy notes	
2-methylpropanoic acid	rancid, buttery
3-methylbutanoic acid	sweaty
2-methylbutanoic acid	sweaty
butanoic acid	rancid, cheese-like
Animal, fecal-like	
skatol	fecal-like

Aroma Chemistry of Cocoa and Chocolate

Cocoa & Chocolate flavor wheel

Aroma Chemistry of Cocoa and Chocolate

Sensory evaluation of chocolates

- Introduction
 - ▶ Flavor
 - ► Aroma: 80% responsible for final flavor
 - => gas chromatography-mass spectrometry (GC-MS)
 - Taste
 - Texture

Aroma analysis at BC

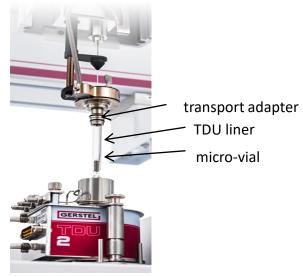
- Configuration of GC-MS system (1)
 - MultiPurpose Sampler (MPS, Gerstel®)
 - Static Headspace Unit (SHS)
 - **Direct Liquid extraction**
 - Thermal Desorption Unit (TDU)
 - Twister (device for Stir Bar Sorptive Extraction (SBSE))
 - Direct thermal desorption of liquids or solids in micro-vials
 - Agitator and heater (heated conditioning and mixing/stirring)

Static Headspace Unit

Twister bar

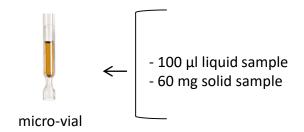
Agitator-Stirrer

Twister desorption


micro-vial

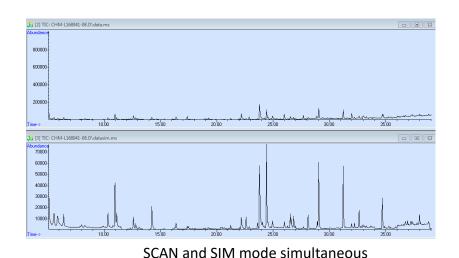
M,PS

GC-MS

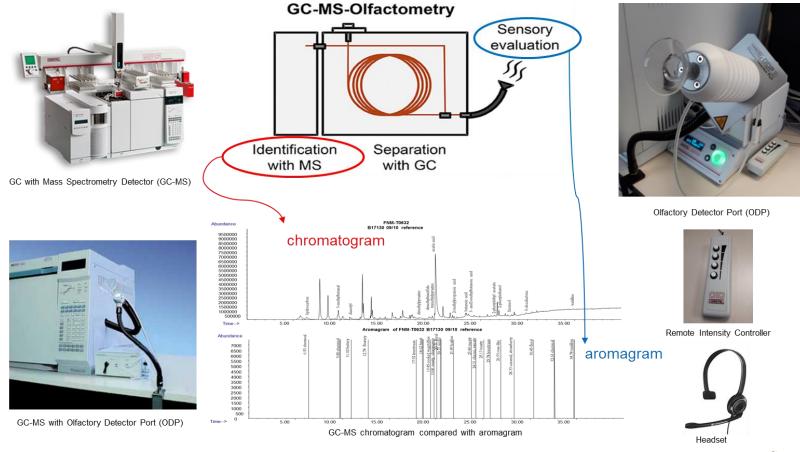


- Configuration of GC-MS system (2)
 - MultiPurpose Sampler (MPS, Gerstel®)
 - Thermal Desorption Unit (TDU)
 - TDU liner and transport adapter
 - Micro-vials (for liquid or solid samples)
 - Twister
 - Cooled Injection System (CIS, Gerstel®)

CIS (-10°C (1 min); 12°C/min to 280°C (20 min))



- Configuration of GC-MS system (3)
 - ▶ ¹D GC-MS (7890A-5975C Agilent)
 - Precolumn CS Fused Silica (2 m x 0.53 mm ID)
 - Agilent J&W DB-FFAP GC Column (50 m x 0.32 mm x 0.50 μm)
 - Agilent Ultimate Union Kits
 - Single quadrupole MS
 - El source
 - MassHunter software
 - SCAN and SIM mode


Ultimate Union kit

- Configuration of GC-MS system (4)
 - Olfactory Detection Port (ODP3, Gerstel®)

- GC-MS analysis of raw materials
 - Cocoa beans: of different geographical origins, of different qualities, screening of smokiness
 - Cocoa liquor: batch variability
 - Cocoa butter: batch variability
 - Cocoa powder: natural vs alkalized
 - Fats and cocoa butter: oxidation status
 - Milk powders: oxidation status
 - Additives: e.g. nut paste, flavors: different suppliers
 - Food contact materials

- Impact of processing on the final flavor
 - Fermentation of cocoa beans
 - Roasting of cocoa beans/nibs: different roasting parameters (time, temperature, water)
 - Conching of chocolate: different conching parameters (time, temperature)
 - Batch variability of chocolate
- Impact of sugar reduction on final chocolate flavour
- Countertyping and Benchmarking
- Shelf life study: Impact of packaging material and storage conditions on flavor of raw materials and chocolate
- Off-odors and taints: identification of responsible off-flavor molecule(s) and characterization of possible cause of off-flavor

- GC-MS-Olfactometry (GC-MS-O)
 - ▶ Identification of odor-active molecules
 - ▶ Identification of off-flavor molecules
 - Additional information for sensory analysis
 - ► Valuable information for GC-MS analysis on which compounds to focus on (GC-O simultaneous with GC-MS)

Conclusions

- Benefits of GC-MS analysis
 - ▶ Molecular insight in the aroma of food ingredients, flavors and food products
 - ▶ Molecular insight in the odor of food contact materials
 - Characterization of possible cause of off-flavor by identification of responsible offflavor molecule(s)
 - Validation with sensory data (correlation)

Thank you for your attention!

